COURSE (MODULE) DESCRIPTION

Course title	Code
Time Series Analysis	

Staff	Department			
Coordinator(s): Assoc. Prof. Dr. Algirdas Bartkus	Department of Quantitative Methods and Modelling, Fac-			
Other(s):	ulty of Economics and Business Administration			

Study cycle	Course type		
First (Bachelor's)	Elective		

Form of implementation	Period of implementation	Language of instruction
Lectures and seminars	Spring semester	English

Requirements for student					
Prerequisites: Mathematical Methods, Statistical Theory, Additional requirements (if any): none					
Economic Principles II, Econ	omic Theory II				
Number of ECTS credits	Student's workload	Contact hours	Individual work		
5	133	48	85		

Purpose of the course and competences developed

Principal goals are: a) to form the analytical skills in time series econometrics and b) to acquire necessary programming knowledge and skills in \mathbf{R} language. The main skills, that are trained under this program: empirical modelling and forecasting of macroeconomic processes; application of time series techniques for macroeconomic analysis; programming in \mathbf{R} .

III N .					
Learning outcomes (learning	Teaching methods	Assessment methods			
outcomes of the programme)					
The ability to read and understand time series	Detailed and careful, step-by-step	Open questions during the			
literature. (1.2)	explanation of the material during the	exams and empirical project.			
The ability to design and to conduct appropri-	lectures and seminars, self-study of				
ate econometric analysis of time series data.	theoretical material and accomplish-				
(2.2)	ment of empirical project under the				
The ability to write R code for any discussed	supervision of lecturer.				
time series model. (3.4)					
The ability to work in teams delivering an					
empirical project (4.1)					

		Co	ntact	/ Indi	vidual	work	: tim	e and	assignments
Course themes		Tutorials	Seminars	Practical classes	Laboratory works	Practice	Total contact hours	Independent work	Assignments
Univariate stationary processes (autoregressive	8		4				12	20	Reading of scien-
(AR) processes; moving average (MA) processes;									tific literature,
mixed (ARMA) processes; estimation of AR, MA									solving of prob-
and ARMA models; forecasting; modifications of									lems at home and
ARMA models)									during the semi-
Vector autoregression (the reduced form standard	8		4				12	20	nars and accom-

VAR and structural A and AB type VAR models; VMA(∞) representation of VAR process and stability condition; choosing of lag length and inclusion of additional variables into VAR; Granger causality and direct Granger procedure; identification of structural A and AB type VAR; impulse-response analysis; forecast error variance decomposition; Blanchard-Quah type structural VAR model, forecasting)					plishment of empirical project.
Nonstationary processes (random walk; random walk with a drift; random walk with a noise; stochastic and deterministic trends; removing the stochastic trend and differencing; trend stationary processes; trends and univariate decompositions; Granger and Newbold on spurious regression; unit roots and Dickey-Fuller tests; Elliott, Rothenberg and Stock, Phillips-Perron, Schmidt and Phillips, Kwiatkowski-Phillips-Schmidt-Shin unit root tests)	8	4	12	20	
Cointegration (cointegration and common trends; vector error correction model; stability of VAR and cointegration; Engle-Granger methodology; Johansens procedure; ADL approach)	8	4	12	25	
Total	32	16	48	85	

Assessment strategy	Share in %	Time of	Assessment criteria
		assessment	
Intermediate test	30	In the middle of	Students will be asked to solve several empirical and
		semester	theoretical problems. Evaluation will take into account
			accuracy and completeness of the answers.
Empirical group project	20	In the end of	Technical aspects of the analysis are of the main im-
		semester	portance. The particular details will be disputed during
			lectures and practical classes.
Final exam	50	During the ex-	Students will be asked to solve several empirical and
		ams session	theoretical problems. Evaluation will take into account
			accuracy and completeness of the answers.

Author	Published in	Title	Issue No. or Volume	Publishing house or Internet site
Compulsory literature	111		of volume	of internet site
Enders, Walter	2014	Applied Econometric Times Series	4 th ed.	John Wiley & Sons, Inc.
Lütkepohl, Helmut Krätzig, Markus (eds.)	2004	Applied Time Series Econometrics		Cambridge University Press
Kirchgässner, Gebhard Wolters, Jürgen	2008	Introduction to Modern Time Series Analysis		Springer-Verlag
Supplementary literature	e			
Juselius, Katerina	2006	The Cointegrated VAR Model: Methodology and Applications		Oxford University Press
Banerjee, Anindya Dolado, Juan J. Galbraith, John W. Hendry, David	1993	Co-Integration, Error Correction, and the Econometric Analysis of Non-Stationary Data		Oxford University Press
Maddala, G. S. Kim, In-Moo	1998	Unit Roots, Cointegration and Structural Change		Cambridge University Press
Cryer, Jonathan D. Chan, Kung-Sik	2008	Time Series Analysis: With Applications in R	2 nd ed.	Springer-Verlag
Pfaff, Bernhard	2010	Analysis of Integrated and Cointegrated Time Series with R	2 nd ed.	Springer-Verlag
Hamilton, James D.	1994	Time Series Analysis		Princeton University Press