

COURSE (MODULE) DESCRIPTION

Course title	Code
Big Data Analytics	

Staff	Department			
Coordinator: Dr Dmirij Celov	Department of Econometric Analysis			
Other(s):	Faculty of Mathematics and Informatics			

Study cycle	Course type					
First (Bachelor's)	Optional					

Form of implementation	Period of implementation	Language of instruction		
Face-to-face	Semester 6	English		

Requirements for student							
Prerequisites:	Statistical	Theory,	Econometric	Additional requirements (if any):			
Theory and Prac	ctice						

Number of ECTS credits	Student's workload	Contact hours	Individual work
5	130	36	94

Purpose of the course and competences developed

The purpose of the course is to acquaint students with the principles of analysis of big data, and to enable them to apply high-dimensional models, using tools from statistical, machine learning and econometrics to solve practical problems.

Learning outcomes	Teaching methods	Assessment methods
1.2 understand the problems related to	Lectures and individual work	Written exam (70%)
prediction and inference when dealing		Labs (20%)
with big data and/or high-dimensional		Practicals (10%)
models		
3.2 know and apply methods of supervised	Lectures, labs with R,	
learning	practical training, and	
3.2 know and apply methods of	individual work.	
unsupervised learning		
3.2 understand the specificity of		
approximations in high dimensions		
3.2 evaluate the empirical adequacy of		
models		

Course themes	Contact / Individual work: time and assignments
---------------	---

	Lectures	Futorials	Seminars	Practical classes	_aboratory work	Practice	Contact hours	Individual work	Assignments due date
1. Introduction to high-dimensional methods,	4		<u> </u>		1	1	6	14	[V], [KMO],
big data and big p inference									[ISLR] Ch. 1-
									2, [ESL] Ch.
									1-2,
	4				1	1		1.4	tidi bi di 3
2. Supervised learning: cross-validation and	4				1	1	6	14	[ISLR] Ch. 3,
penalized estimation, regression trees and									5,7,8.2 [ESL]
random forests, bagging and boosting									Ch. 3, 5, 7, 8.7, 10
									6.7, 10
3. Classification and support vector machines	4				1	1	6	14	[ISLR] Ch. 4,
									9 [ESL] Ch. 4,
									12
Midterm exam									
4. Unsupervised learning: density estimation,	4				1	1	6	24	[ISLR] Ch. 10
principal components and factor models,									IECI I Ch. 14
clustering, topic models									[ESL] Ch. 14
5. Asymptotic approximations in high	4				1	1	6	14	[CGHST],
dimensions							-		[CHSa],
6. Inference in high-dimensional models	4				1	1	6	14	[CHSb]
Final exam									
Total	24				6	6	36	94	

Assessment strategy	Weight (%)	Time of assessment	Criteria
Practical training	10	Regular	A correct solution of 2 equally valued tasks is required to get the maximum.
Labs	20	End of term	4 equally valuated tasks correctly implemented/solved are required to get the maximum.
Midterm examination	35	Mid-term	10 short questions and a solution of 2 exercises.
Final examination	35	End of term	4 points out of 10 from the final exam is required to pass the course. Given this condition holds, the final mark is obtained as a weighted average from the two components.

Author	Published in	Title	Issue No. or Volume	Publishing house or Internet site
Required reading	'			
[ISLR] James, G., D.	2014	An Introduction to		Springer: http://www-
Witten, T. Hastie, and		Statistical Learning		bcf.usc.edu/~gareth/IS
R. Tibshirani		with Applications in R		<u>L/index.html</u>
[ESL] Hastie, T., R.	2009	The Elements of Statistical		Springer
Tibshirani, and J.		Learning: Data Mining,		
Friedman		Inference, and Prediction		
[CGHST]	2013	Econometrics of High-		NBER Lectures and
Chernozhukov, V.,		Dimensional Sparse		Video Materials:
M. Gentzkow,		Models		http://www.nber.org/e
C. Hansen, J. Shapiro,				conometrics_minicour
M. Taddy				se 2013/
[CHSa]	2015	Post-Selection and Post-	105	American Economic
Chernozhukov, V., C.		Regularization		Review
Hansen, and M.		Inference in Linear Models		
Spindler		with Many Controls and		
		Instruments		
[CHSb]	2015	Valid Post-Selection and	forthcom.	Annual Review of
Chernozhukov, V., C.		Post-		Economics
Hansen, and M.		Regularization Inference:		
Spindler		An Elementary, General		
		Approach		
[HK] Hansen, C. and	2014	Instrumental Variables	182	Journal Econometrics
D. Kozbur		Estimation with Many		
		Weak		
		Instruments Using		
		Regularized JIVE		
[KMO] Kleinberg, J.,	2015	Prediction Policy	105	American Economic
J. Ludwig, S.		Problems		Review: Papers and
Mullainathan, and Z.				Proceedings
Obermeyer				
[V] Varian, Hal R.	2014	Big data: New tricks for	28	Journal of Economic
		econometrics		Perspectives