

COURSE (MODULE) DESCRIPTION

Course title	Code
Statistical Theory	

Staff	Department
Coordinator: Dr Povilas Lastauskas and Ovidijus	Faculty of Economics and Business Administration
Stauskas (Lund University, Sweden)	
Other(s): Dr Ieva Mikaliūnaitė	

Study cycle	Course type				
First (Bachelor's)	Compulsory				

Form of implementation	Period of implementation	Language of instruction
Face-to-face and online	Semester 1 and 2	English

Requirements for student					
Prerequisites: Additional requirements (if any):					

Number of ECTS credits	Student's workload	Contact hours	Individual work
10	260	72	188

Purpose of the course and competences developed

This course aims to provide theoretical knowledge of both the frequentist and the Bayesian approaches to statistics, useful for the statistical analysis of economic, financial, and social problems.

Learning outcomes (learning	Teaching methods	Assessment methods
outcomes of the programme)		
To be in possession of a good grasp of the elementary tools of descriptive statistics; should understand elementary principles of probability and statistical theory; should be competent in applying basic methods of statistical inference as well as Bayesian approach to statistics. (1.2)	Lectures and lecture notes, tutorials.	Written examination and homework.
Find relevant data, evaluate its quality, conduct statistical analysis using modern software packages and prepare a final report using scientific typesetting tools. (3.4)	Lectures and lecture notes, tutorials, labs, and independent statistical project.	
Expand own understanding, knowledge and skills working on problem sets independently (5.1)	Individual homework assignments.	
The ability to work in teams delivering an empirical project (4.1)	Group homework assignments.	

	Contact / Individual work: time and assignments						d assignments		
Course themes	Lectures	Tutorials	Seminars	Practical classes	Laboratory work	Practice	Contact hours	Individual work	Assignments due date
FALL semester (Statistical Theory I)									
Review of Statistical Science	2						2	5	
Descriptive Statistics	2						2	5	
Probability: events, outcomes and sample space; Venn diagrams; unions, intersections and complements; simple combinatorial formulae for sampling with and without replacement; random variables	4	2					6	10	
Probability distributions: univariate discrete and continuous distributions; probability mass functions; cumulative distribution functions and probability density functions; expectations, variances and higher moments; Bernoulli trials and the Binomial distribution; Uniform and Normal distributions; Chisquared, t and F distributions	6	2					8	20	Problem Set 1 Emphasis on combinatorial basics of probability, probability distributions and densities. MM chapters 2-3, Appendices B and C. LM chapter 2.
Sample statistics: the concept of an estimator; unbiasedness and efficiency; sampling distributions, Law of Large Numbers and Central Limit Theorem	6						6	20	
Estimation and Inference: point and confidence interval estimation and hypothesis testing; null and alternative hypotheses; critical regions; one-tailed and two-tailed tests; Type I and Type II errors; power functions	4	2					6	15	Problem Set 2 Group Project
Bivariate Regression: ordinary least squares, conditional expectations function, tests of significance, sampling distributions of regression coefficients SPRING semester (Statistical Theory II)	6	2					8	20	Problem Set 3 Work on hypothesis testing and estimation. MM chapters 12- 13, 14.1-14.4. LM chapters 5-7. Time permitting: Tutorial on running simple regressions, interpreting results, conducting hypothesis testing.
The Basics of Bayesian Inference: Logic, Probability, and Uncertainty	4	2					6	20	Tutorial on R and its use for Bayesian

Total	54	18			72	188	
							nomework o
Between Means							Individual homework 6
and Bayesian Inference for Difference							project and
Bayesian versus Frequentist Inferences	8	2			6	18	R-programming
Proportion, Poisson, and Normal Mean						1.0	homework 4,5
Bayesian Inference for Binomial	6	2			12	25	Individual
							random variables;
							continuous
							inference for
							Bayesian
							variables;
							discrete random
							inference for
							Bayesian
							inference;
							Bayesian
							Basics of
							covering topics
Tundom variables							term exam:
Random Variables	2	_				10	homework 3; Mid-
Bayesian Inference for Continuous	2	2			4	10	Individual
Variables	4	2			U	20	homework 2
Bayesian Inference for Discrete Random	4	2			6	20	Individual
							homework 1
							inference; Individual

Assessment strategy	Share	Time of	Assessment criteria
	in %	assessment	
Fall semester (Statistical	Theory I)		
Written exam	50	End of fall semester	The final exam will consist of open and mathematical questions in which students have to show their knowledge and analytical capabilities, and shorter questions testing knowledge of main concepts and statistical ideas.
Problem sets	30	Throughout semester	There will be three problem sets, which will involve problem solving and data manipulation exercises. Only one randomly picked problem set per student will be graded. However, to get a grade, all three problem sets must be submitted. All problem sets will be returned at the same time, after the last one is being covered in classes.
Group project	20	Second half of the fall semester	Presentation in class of the real-world data exercise, answering questions, and demonstrating knowledge of main statistical concepts.
Spring semester (Statisti	cal Theory II)		
Written exam	75	1 - Middle of spring semester (25%)	Exam questions include all topics covered in the course lectures and discussions. The exam includes 2 parts: 4 points for 20 MCQs and 6 points for 6 written questions. For written

		1 - End of spring semester (50%)	ones, each is evaluated by 1 point using the evaluation criteria below: -1 point (excellent) evaluates the answer, giving a detailed and clear answer to a question based not only on lecture material but also on its own, substantiated reasoning. -The 0.5 point (well) evaluates the answer in detail, but not very accurately. -A score of 0.25 (weak) is considered the answer to be vague or incomplete, with several major errors. -0 points (unsatisfactory) no answer or it's completely wrong.
Programming project	25	During the course	The project evaluates students' skills in using R-program for data analysis with 3 questions. Each question is evaluated by the following criteria: correct answers, clear and readable codes, and simplicity.

Author	Published	Title	Issue No.	Publishing						
	in		or Volume	house						
				or Internet site						
Required reading										
Lecture notes and slide	s as well as on	line resources will be made avail	able to all student	ts. Selected						
chapters from LM, MM	I and Bolstad	are compulsory.								
R J Larsen and M L	2011	An Introduction to		Pearson						
Marx		Mathematical Statistics and its	s							
(Referred to as LM)		Applications								
I Miller and M Miller	2012	John E. Freund's Mathematica	1 8th Edition	Pearson						
(Referred to as MM)		Statistics with Applications								
Contributors	2013	OpenStax Intro Statistics		<u>Introductory</u>						
				Statistics -						
				<u>OpenStax</u>						
D. Diez, M.	2019	OpenIntro Statistics	4 th Edition	<u>OpenIntro</u>						
Cetinkaya-Rundel, C.		_		Statistics						
Barr (Editors)										
William M. Bolstad	2017	Introduction to Bayesian	n	Wiley						
and James M. Curran		Statistics (3 rd edition)								
Supplementary reading	ng (text books)								
James V Stone	2013	Bayes' Rule: A tutorial		Sebtel Press						
		Introduction to Bayesian								
		Analysis								
D.S.Sivia and	2006	Data Analysis: A Bayesian		Oxford						
J.Skilling		Tutorial		University Press						