

Faculty of Economics and Business Administration

COURSE (MODULE) DESCRIPTION

Course title						Code		
Statistical Theory								
	Staff				Depar			
Coordinator: Dr Povilas Lastauskas and Ov			vidijus	Faculty of Econo	omics and	Business Administration		
	Stauskas (Lund University, Sweden)							
Other(s): Dr Ieva Mikaliū	inaite							
Study			Cours	se type				
First (Bachelor's)	-)			Compulsory				
Form of implementa	tion	Peri	od of im	plementation	Laı	nguage of instruction		
Face-to-face and online		Semeste	er 1 and 2	2	English			
		Req	uiremen	ts for student				
Prerequisites:				Additional requ	irements	(if any):		
	G(1					T 10 0 1 1 1 1		
Number of ECTS	Stude	ent's wor	kload	Contact ho	urs	Individual work		
credits		260		72		188		
10		200		12		100		
	Purnose	of the c	ourse an	d competences de	veloped			
This course aims to provid						Bayesian approaches to		
statistics, useful for the sta								
,		2		, ,	I			
Learning outcomes	s (learnir	ıg	Te	eaching methods		Assessment methods		
outcomes of the pr								
To be in possession of a g	U					ritten examination and		
elementary tools of description			Lecture	s and lecture notes	s. ho	mework.		
should understand elemen			tutorial		<i>,</i>			
probability and statistical	•							
be competent in applying								
statistical inference as well as Bayesian approach to statistics. (1.2)								
Find relevant data, evaluat	/ te its qual	lity	Lecture	s and lecture notes	3			
conduct statistical analysis using modern			tutorials, labs, and					
software packages and prepare a final			independent statistical					
report using scientific type			project.	_				
(3.4)								
Expand own understandin		edge	Individ	ual homework				
and skills working on problem sets			assignn					
independently (5.1)			Ũ					
The ability to work in tear	ns delive	rıng an	· ·	nomework				
empirical project (4.1) as			assignm	nents.				

		Conta	act /	Indi	vidual	l wo	ork: ti	me an	d assignments
Course themes	Lectures	Tutorials	Seminars	Practical classes	Laboratory work	Practice	Contact hours	Individual work	Assignments due date
FALL semester (Statistical Theory I)			•1						
Review of Statistical Science	2						2	5	
Descriptive Statistics	2						2	5	
Probability: events, outcomes and sample space; Venn diagrams; unions, intersections and complements; simple combinatorial formulae for sampling with and without replacement; random variables	4	2					6	10	
Probability distributions: univariate discrete and continuous distributions; probability mass functions; cumulative distribution functions and probability density functions; expectations, variances and higher moments; Bernoulli trials and the Binomial distribution; Uniform and Normal distributions; Chi- squared, t and F distributions	6	2					8	20	Problem Set 1 Emphasis on combinatorial basics of probability, probability distributions and densities. MM chapters 2-3, Appendices B and C. LM chapter 2.
Sample statistics: the concept of an estimator; unbiasedness and efficiency; sampling distributions, Law of Large Numbers and Central Limit Theorem	6						6	20	
Estimation and Inference: point and confidence interval estimation and hypothesis testing; null and alternative hypotheses; critical regions; one-tailed and two-tailed tests; Type I and Type II errors; power functions	4	2					6	15	Problem Set 2 Group Project
Bivariate Regression: ordinary least squares, conditional expectations function, tests of significance, sampling distributions of regression coefficients SPRING semester (Statistical Theory II)	6	2					8	20	Problem Set 3 Work on hypothesis testing and estimation. MM chapters 12- 13, 14.1-14.4. LM chapters 5-7. Time permitting: Tutorial on running simple regressions, interpreting results, conducting hypothesis testing.
Review of Probability: axioms, conditional probability, random variables, mean, variance.	3	2					6	20	Tutorial on R and its use for Bayesian

							inference; Individual homework 1
Discrete and Continuous random variables: Bernoulli, Bnomial, Poisson, Exponential, Gamma, Beta, Gaussian.	3	2			6	20	Individual homework 2
Their properties, means, variances. Bayesian Inference for Discrete Random variables: likelihood, prior, conjugacy, posterior and posterior predictive distributions.	6	2			4	10	Individual homework 3;
Bayesian Inference for Continuous Random Variables. Gaussian Model and Bayesian Linear regression.	6	2			12	25	Individual homework 4,5
Differences between Bayesian and Frequentist views – the big picture.	6	2			6	18	R-programming project and Individual homework 6
Total	54	18			72	188	

Assessment strategy	Share	Time of	Assessment criteria
	in %	assessment	
Fall semester (Statistical	Theory I)		
Written exam	50	End of fall semester	The final exam will consist of open and mathematical questions in which students have to show their knowledge and analytical capabilities, and shorter questions testing knowledge of main concepts and statistical ideas.
Problem sets	30	Throughout semester	There will be three problem sets, which will involve problem solving and data manipulation exercises. Only one randomly picked problem set per student will be graded. However, to get a grade, all three problem sets must be submitted. All problem sets will be returned at the same time, after the last one is being covered in classes.
Group project	20	Second half of the fall semester	Presentation in class of the real-world data exercise, answering questions, and demonstrating knowledge of main statistical concepts.
Spring semester (Statisti	cal Theory II)		

Written exam	70	End of semester	 Exam questions include all topics covered in the course lectures and discussions. It is exercises based and is worth of 10 points. Each question is evaluated by 1 point using the evaluation criteria below: -1 point (excellent) evaluates the answer, giving a detailed and clear answer to a question based not only on lecture material but also on its own, substantiated reasoning. -The 0.5 point (well) evaluates the answer in detail, but not very accurately. -A score of 0.25 (weak) is considered the answer to be vague or incomplete, with several major errors. -0 points (unsatisfactory) no answer or it's completely wrong.
Programming project	30	During the course	The project evaluates students' skills in using R-program for data analysis with 3 questions. Each question is evaluated by the following criteria: correct answers, clear and readable codes, and simplicity.

Author	Published	Title	Issue No.	Publishing
	in		or Volume	house
				or Internet site
Required reading				
Lecture notes and slide	s as well as on	line resources will be made avail	lable to all student	ts. Selected
chapters from LM, MM	I and Bolstad a	are compulsory.		
R J Larsen and M L	2011	An Introduction	to 5th Edition	Pearson
Marx		Mathematical Statistics and i	ts	
(Referred to as LM)		Applications		
I Miller and M Miller	2012	John E. Freund's Mathematica	l 8th Edition	Pearson
(Referred to as MM)		Statistics with Applications		
Contributors	2013	OpenStax Intro Statistics		Introductory
				Statistics -
				<u>OpenStax</u>

D. Diez, M.	2019	Open Intro Statistics	4 th Edition	<u>OpenIntro</u>			
Cetinkaya-Rundel, C.		-		Statistics			
Barr (Editors)							
William M. Bolstad	2017	Introduction to Bayesian		Wiley			
and James M. Curran		Statistics (3 rd edition)					
Supplementary reading	Supplementary reading (text books)						
James V Stone	2013	Bayes' Rule: A tutorial		Sebtel Press			
		Introduction to Bayesian					
		Analysis					
D.S.Sivia and	2006	Data Analysis: A Bayesian		Oxford			
J.Skilling		Tutorial		University Press			