

Faculty of Economics and Business Administration

COURSE (MODULE) DESCRIPTION

Course title	Code
MATHEMATICAL METHODS	

Staff	Department
Coordinator: Assoc. Prof. Dr. Gintautas Bareikis	Faculty of Economics and Business Administration
(Semester 1) and Milda Norkutė, PhD (Semester 2)	
Other(s):	

Study cycle	Course type
First (Bachelor's)	Compulsory

Form of implementation	Period of implementation	Language of instruction
Face-to-face	Semester 1 and 2	English

Requirements for student				
Prerequisites:	Additional requirements:			

Number of ECTS credits	Student's workload	Contact hours	Individual work
10	300	84	216

Purpose of the course and competences developed The aim of the course is to provide students with good understanding of key mathematical concepts and techniques needed for the rest of the programme and be able to apply these to solve economic and financial problems. Learning outcomes of Learning outcomes of the course **Teaching methods Assessment methods** the programme 1.2 Fall semester detail Have acquired knowledge in Lectures, seminars, mathematical methods and is able to analysis of exercises, assessment: Written competently apply them. consultations, exam, theory (TBD%), discussions, tutorials. Colloquiums (TBD%), 3.2 Use and interpret mathematical models Quizzes (TBD%), 1,2 describing economic or financial problems (TBD%). phenomena.

Construct mathematical arguments and

4.2

5.1

communicate them in a clear manner		
through written.		
Expand own understanding, knowledge	Problem sets at home.	
and skills working on problem sets		
independently.		

	Contact / Individual work: time and assignments						: time	ssignments	
Course themes	Lectures	Tutorials	Seminars	Practical classes	Laboratory work	Practice	Contact hours	Individual work	Assignments due date
FALL semester									~~~
Introductory topics. Logic	1			4			1	10	SH chapters 1-2
Sets operations. The sets of real numbers. supA, infA. modulus, distance. Sequences of real numbers.	4			4			8	24	Problem set 1 due. Emphasis on linear algebra and its vast applications. SH chapters 15- 16
Functions of one variable. Graphs, tables, formulas. Inverse function, composition of the functions. Classical functions, their graphs and properties. Function limit. Continuity.	5			7			12	21	SH chapters 4-7
Derivative of the function one variable. Differential. Derivatives higher order. Main theorems of continuous and differentiable functions . Tailor formula. Optimization, concavity- convexity of the function one variable.	8			9			17	38	SH chapter 8. Applications to economics.
Indefinite and definite integrals. Integration by parts, integration by substitution. Infinite intervals of integration.	6			4			10	39	SH chapter 9. Applications to economic problems, interpretation. Problem set 2 due.
SPRING semester									
Systems of linear equations. Matrix algebra. Determinants, matrix inverse. Eigenvalues, quadratic forms, positive and negative (semi-)definite matrices.	8			4			12	30	Emphasis on linear algebra and its vast applications. SH chapters 15- 16, SHSS chapter 1.
Functions of many variables. Partial derivatives. Linear approximation, differentials for multivariable functions. Implicit differentiation. Convex sets. (Quasi-)concavity/convexity of functions. Gradient and the Hessian matrix.	6			3			9	20	SH chapters 11, 12.1-12.9. SHSS chapter 2.1-2.4, 2.7.Applications in economics. Problem set 3.
Multivariable optimization. Constrained optimization. Lagrange multipliers and their interpretation.	6			3			9	20	SH chapters 13, 14.1-14.6. SHSS chapter 3.1-3.4. Applications in economics.

Multiple integrals over general domains.	4		2		6	14	Emphasis on
The multiple Riemann integral. Change of variables. Generalized multiple integrals.							calculus, applications to economic problems. SHSS chapter 4.1, 4.4- 4.8. Problem set
Total	48		36		84	216	т.

Assessment strategy	Share	Time of	Assessment criteria
	in %	assessment	
Written exam 1	TBD	End of fall	Closed and open-ended problems, with a
		semester	focus on mathematical rigour and ability to
Written exam 2	TBD	End of spring	apply mathematical tools to economic
		semester	problems. The exhaustiveness of the answer
			and the ability to creatively apply
			mathematical methods will be given a bonus.
Problem sets	TBD	Throughout the	Each problem set will include 5 problems to
		year	be solved at home. Rigour and depth of
			solutions will be assessed.
Quizzes	TBD	Throughout the	TBD
		year	
Colloquiums	TBD	Throughout the	TBD
_		year	

Author	Published	Title	Issue No.	Publishing house
	in		or Volume	or Internet site
Required reading				
Sydsaeter, K and P	2016	Essential Mathematics for	5 th edition	Prentice Hall
Hammond		Economic Analysis		
(Referred to as SH)				
Sydsaeter, K,	2008	Further Mathematics for	2 nd edition	Prentice Hall
Hammond, P,		Economic Analysis		
Seierstad, A and A				
Strøm (Referred to				
as SHSS)				
Supplementary readi	ing			
Bradley, T	2013	Essential Mathematics for	4 th edition	Wiley
		Economics and Business		
Chiang, A	2004	Fundamental Methods of	4 th edition	McGraw-Hill
		Mathematical Economics		
Pemberton, M and N	2015	Mathematics for Economists	4 th edition	Oxford University
Rau				Press