Faculty of Economics
and Business
Administration

## COURSE (MODULE) DESCRIPTION

| Course title | Code |
| :--- | :---: |
| MATHEMATICAL METHODS |  |


| Staff | Department |
| :--- | :---: |
| Coordinator: Assoc. Prof. Dr. Gintautas Bareikis | Faculty of Economics and Business Administration |
| (Semester 1) and Milda Norkuté, PhD (Semester 2) |  |
| Other(s): |  |


| Study cycle | Course type |
| :--- | :--- |
| First (Bachelor's) | Compulsory |


| Form of implementation | Period of implementation | Language of instruction |
| :--- | :--- | :--- |
| Face-to-face | Semester 1 and 2 | English |


| Requirements for student |  |
| :--- | :--- |
| Prerequisites: | Additional requirements: |


| Number of ECTS <br> credits | Student's workload | Contact hours | Individual work |
| :---: | :---: | :---: | :---: |
| 10 | 300 | 84 | 216 |

## Purpose of the course and competences developed

The aim of the course is to provide students with good understanding of key mathematical concepts and techniques needed for the rest of the programme and be able to apply these to solve economic and financial problems.

| Learning <br> outcomes of <br> the <br> programme | Learning outcomes of the course | Teaching methods | Assessment methods |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 . 2}$ | Have acquired knowledge in <br> mathematical methods and is able to <br> competently apply them. | Lectures, seminars, <br> analysis of exercises, <br> consultations, <br> discussions, tutorials. | Fall semester detail <br> assessment: Written <br> exam, theory (TBD\%), <br> Colloquiums (TBD\%), <br> Quizzes (TBD\%), 1,2 |
| $\mathbf{3 . 2}$ | Use and interpret mathematical models <br> describing economic or financial <br> phenomena. | problems (TBD\%). |  |
| $\mathbf{4 . 2}$ | Construct mathematical arguments and <br> communicate them in a clear manner <br> through written. | Problem sets at home. |  |
| $\mathbf{5 . 1}$ | Expand own understanding, knowledge <br> and skills working on problem sets <br> independently. |  |  |


| Course themes | Contact / Individual work: time and assignments |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 烒 | $\begin{aligned} & \text { n } \\ & \text { 蔦 } \\ & 0 \\ & \hline \end{aligned}$ |  |  |  |  | $$ |  | Assignments due date |
| FALL semester |  |  |  |  |  |  |  |  |  |
| Introductory topics. Logic | 1 |  |  |  |  |  | 1 | 10 | SH chapters 1-2 |
| Sets operations. The sets of real numbers. supA, infA. modulus, distance. Sequences of real numbers. | 4 |  |  | 4 |  |  | 8 | 24 | Problem set 1 due. Emphasis on linear algebra and its vast applications. SH chapters 1516 |
| Functions of one variable. Graphs, tables, formulas. Inverse function, composition of the functions. Classical functions, their graphs and properties. Function limit. Continuity. | 5 |  |  | 7 |  |  | 12 | 21 | SH chapters 4-7 |
| Derivative of the function one variable. Differential. Derivatives higher order. Main theorems of continuous and differentiable functions. Tailor formula. Optimization, concavityconvexity of the function one variable. | 8 |  |  | 9 |  |  | 17 | 38 | SH chapter 8. Applications to economics. |
| Indefinite and definite integrals. Integration by parts, integration by substitution. Infinite intervals of integration. | 6 |  |  | 4 |  |  | 10 | 39 | SH chapter 9. Applications to economic problems, interpretation. Problem set 2 due. |
|  |  |  |  |  |  |  |  |  |  |
| Systems of linear equations. Matrix algebra. Determinants, matrix inverse. Eigenvalues, quadratic forms, positive and negative (semi-)definite matrices. | 8 |  |  | 4 |  |  | 12 | 30 | Emphasis on linear algebra and its vast applications. SH chapters 1516, SHSS chapter 1. |
| Functions of many variables. Partial derivatives. Linear approximation, differentials for multivariable functions. Implicit differentiation. Convex sets. (Quasi-)concavity/convexity of functions. Gradient and the Hessian matrix. | 6 <br>  <br>  <br> 8 |  |  | 3 |  |  | 9 | 20 | SH chapters 11, 12.1-12.9. <br> SHSS chapter <br> 2.1-2.4, <br> 2.7.Applications in economics. <br> Problem set 3. |
| Multivariable optimization. Constrained optimization. Lagrange multipliers and their interpretation. | 6 |  |  | 3 |  |  | 9 | 20 | SH chapters 13 , 14.1-14.6. <br> SHSS chapter 3.1-3.4. <br> Applications in economics. |


| Multiple integrals over general domains. <br> The multiple Riemann integral. Change <br> of variables. Generalized multiple <br> integrals. | 4 |  |  | 2 |  |  | 6 | 14 | Emphasis on <br> calculus, <br> applications to <br> economic <br> problems. SHSS <br> chapter 4.1, 4.4- <br> 4.8. Problem set <br> 4. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total | $\mathbf{4 8}$ |  |  | $\mathbf{3 6}$ |  |  | $\mathbf{8 4}$ | $\mathbf{2 1 6}$ |  |


| Assessment strategy | Share <br> in \% | Time of <br> assessment | Assessment criteria |
| :--- | :---: | :--- | :--- |
| Written exam 1 | TBD | End of fall <br> semester | Closed and open-ended problems, with a <br> focus on mathematical rigour and ability to <br> apply mathematical tools to economic |
| Written exam 2 | TBD | End of spring <br> semester <br> and the ability to creatively apply <br> mathematical methods will be given a bonus. |  |
| Problem sets | TBD | Throughout the <br> year | Each problem set will include 5 problems to <br> be solved at home. Rigour and depth of <br> solutions will be assessed. |
| Quizzes | TBD | Throughout the <br> year | TBD |
| Colloquiums | TBD | Throughout the <br> year | TBD |


| Author | Published in | Title | Issue No. or Volume | Publishing house or Internet site |
| :---: | :---: | :---: | :---: | :---: |
| Required reading |  |  |  |  |
| Sydsaeter, K and P <br> Hammond <br> (Referred to as SH) | 2016 | Essential Mathematics for Economic Analysis | $5^{\text {th }}$ edition | Prentice Hall |
| Sydsaeter, K, Hammond, P, Seierstad, A and A Strøm (Referred to as SHSS) | 2008 | Further Mathematics for Economic Analysis | $2^{\text {nd }}$ edition | Prentice Hall |
| Supplementary reading |  |  |  |  |
| Bradley, T | 2013 | Essential Mathematics for Economics and Business | $4^{\text {th }}$ edition | Wiley |
| Chiang, A | 2004 | Fundamental Methods of Mathematical Economics | $4^{\text {th }}$ edition | McGraw-Hill |
| Pemberton, M and N Rau | 2015 | Mathematics for Economists | $4^{\text {th }}$ edition | Oxford University Press |

