

COURSE (MODULE) DESCRIPTION

Course title	Code
Financial Markets	

Staff	Department
Coordinator(s): Renata Guobužaitė,	Faculty of Economics and Business Administration
Nora Marija Laurinaitytė	
Other(s):	

Study cycle	Course type				
First (Bachelor's)	Elective				

Form of implementation Period of implementation		Language of instruction
Face-to-face	Semester 6	English

Requirements for student							
Prerequisites:	Prerequisites: Mathematical Methods, Statistical Additional requirements (if any): none						
Theory, Finance	e I and Finance I	I					

Number of ECTS credits	Student's workload	Contact hours	Individual work hours
5	130	36	94

Purpose of the course and competences developed

The purpose of this course on financial markets is introducing students to derivatives pricing, a sub field of asset pricing, discussed in discrete time with introduction to continuous time.

Learning outcomes	Teaching methods	Assessment methods
Price options, forwards and futures using discrete-time models. (1.2)	Lectures and lecture notes, tutorials, practical class	Final exam (70%)
Use the Black-Scholes model to understand its empirical shortcomings, and to use alternatives to it. (3.1)	Lectures and lecture notes, tutorials	Group take-home assignment (30%)
Understanding the mathematical foundations of continuous-time finance (3.2)	Lectures and lecture notes, tutorials, reading academic articles, group take-home assignment	
Work as an integral part of a team, while making individual suggestions and developing communication skills. (4.1)	Group take-home assignment	

	Contact / Individual work: time and assignments					and assignments			
Course themes	Lectures	Tutorials	Seminars	Practical classes	Laboratory work	Practice	Contact hours	Individual work	Assignments
1. One-period models	2	1					3	8	Hull, Ch. 13
2. Binomial model	1	1					2	6	Hull, Ch. 13
3. Black-Scholes model	2	2					4	10	Hull, Ch. 15
4. "Greeks" and hedging	2						2	5	Hull, Ch. 19
5. Implied volatility, smiles, and skew	2	1					3	8	Hull, Ch. 20
6. Alternatives to the Black-Scholes model	2						2	5	Hull, Ch. 27
7. Interest rate derivatives	2	1					3	8	Hull, Ch. 6+29
8. Valuing defaultable securities	2	1					3	8	Hull, Ch. 24+25
9. Introduction to continuous time models	4	2					6	15	Hull, Ch. 14
10. Monte Carlo simulation and variance-reduction methods	2	1					3	8	Hull, Ch. 21; Glasserman, Ch. 4
11. Exotic options	1	1					2	5	Hull, Ch. 26
12. Pricing of forwards and futures	2	1					3	8	Hull, Ch. 2+5
Total	24	12					36	94	

Assessment strategy	Share	Time of	Assessment criteria
	in %	assessment	
Group take-home	30	One day before the	Group take-home assignment, given out around
assignment		final exam	Easter, which asks a group of 2-3 students to
			write codes in R (Matlab or Octave can alternatively be used as well) in order to price
			derivatives and to use them in order to obtain
			results, which are to be interpreted. It needs to be
			handed in by e-mail until 11:59 pm on the day
			before the final exam.
Final exam	70	Final exam period	Written exam held in the exam period. A
(90 minutes)			collection of exercises that require calculations,
			derivations, or concise answers.
			The final exam and the take-home assignment
			shall be assessed in the following way:
			- over 95%, or excellent: 10;
			- over 85%, or very good: 9;
			- over 75%, or good: 8;
			- over 65%, or fair: 7;
			- over 55%, or satisfactory: 6;

- over 50%, or poor: 5.
Under 50%, or unsatisfactory: 4, 3, 2, 1.

Author	Published in	Title	Issue No. or Volume	Publishing house or Internet site				
Required reading								
	as well as onli	ne resources will be made availa	able to all studen	ts.				
John C. Hull	2017	Options, Futures and Other Derivatives	10th edition	Pearson Prentice Hall				
The R Project for Statistical Computing	2017	An Introduction to R						
Supplementary reading	g (text books)							
Zvi Bodie; Alex Kane; Alan J. Marcus	2010	Investments	9th edition	McGraw-Hill				
Paul Glasserman	2003	Monte Carlo Methods in Financial Engineering	1st edition	Springer				
Steven E. Shreve	2004	Stochastic Calculus for Finance I: The Binomial Asset Pricing Model	1st edition	Springer				
Steven E. Shreve	2004	Stochastic Calculus for Finance II: Continuous-Time Models	1st edition	Springer				
Supplementary reading	g (articles)							
Black, Fischer; Scholes, Myron	1973	The Pricing of Options and Corporate Liabilities	Vol. 81, No.3, pp. 637-654	The Journal of Political Economy				
Heston, Steven L.	1993	A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options	Vol. 6, No.2, pp. 327-343	Review of Financial Studies				
Merton, Robert C.	1976	Option Pricing when Underlying Stock Returns are Discontinuous	Vol. 3, pp. 125-144	Journal of Financial Economics				
Bakshi, Gurdip; Cao, Charles; Chen, Zhiwu	1997	Empirical Performance of Alternative Option Pricing Models	Vol. 52, No. 5, pp. 2003-2049	Journal of Finance				